If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/a^2=80
We move all terms to the left:
1/a^2-(80)=0
Domain of the equation: a^2!=0We multiply all the terms by the denominator
a^2!=0/
a^2!=√0
a!=0
a∈R
-80*a^2+1=0
We add all the numbers together, and all the variables
-80a^2+1=0
a = -80; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-80)·1
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{5}}{2*-80}=\frac{0-8\sqrt{5}}{-160} =-\frac{8\sqrt{5}}{-160} =-\frac{\sqrt{5}}{-20} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{5}}{2*-80}=\frac{0+8\sqrt{5}}{-160} =\frac{8\sqrt{5}}{-160} =\frac{\sqrt{5}}{-20} $
| 356-(f-23)=234 | | 1/9x=3x/3*81x | | 15/x=0.111 | | x+16/3+7=6 | | -w/5+13=17 | | y=-5-1+3 | | 7777777777776676709122=2299999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 | | 777777777777667670912222999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 | | 777777777777667670912222999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 | | x^2+12x-231=0 | | x+75=x+17 | | X+25=2z | | W+15=6e | | P+72=7p | | B+30=7b | | S+28=5t | | V+78=7v | | 2r-40=280 | | C+28=2c | | 9.39+3r=17.88 | | B+12=3b | | y+40=3y | | 2n-(-4.7)=19.7 | | 7x=32+17-x+9 | | 3^x+^1=3^5 | | 3^x+^1=35 | | -6(-4u+1)-6u=3(u-4)-6 | | 0.2(x-10)+0.5=1-0.8(20-2x)-0.5 | | X/10=+8-x/5 | | 34=2v+4(v-5) | | (1-p)^12=0.11 | | 2.75^n=83 |